Using Bayesian Belief Networks to Investigate Farmer Behavior and Policy Interventions for Improved Nitrogen Management

Abstract

Increasing farmers’ adoption of sustainable nitrogen management practices is crucial for improving water quality. Yet, research to date provides ambiguous results about the most important farmer-level drivers of adoption, leaving high levels of uncertainty as to how to design policy interventions that are effective in motivating adoption. Among others, farmers’ engagement in outreach or educational events is considered a promising leverage point for policy measures. This paper applies a Bayesian belief network (BBN) approach to explore the importance of drivers thought to influence adoption, run policy experiments to test the efficacy of different engagement-related interventions on increasing adoption rates, and evaluate heterogeneity of the effect of the interventions across different practices and different types of farms. The underlying data comes from a survey carried out in 2018 among farmers in the Central Valley in California. The analyses identify farm characteristics and income consistently as the most important drivers of adoption across management practices. The effect of policy measures strongly differs according to the nitrogen management practice. Innovative farmers respond better to engagement-related policy measures than more traditional farmers. Farmers with small farms show more potential for increasing engagement through policy measures than farmers with larger farms. Bayesian belief networks, in contrast to linear analysis methods, always account for the complex structure of the farm system with interdependencies among the drivers and allow for explicit predictions in new situations and various kinds of heterogeneity analyses. A methodological development is made by introducing a new validation measure for BBNs used for prediction.

Publication Type
Journal Article
Authors
Felix Jäger
Jessica Rudnick, University of California, Davis
Mark Lubell, University of California, Davis
Martin Kraus
Date
Journal
Environmental Management
Share

Related Content